Solidification Mechanism of Bayer Red Mud under the Action of Calcium Hydroxide

Author:

Song Zhiwei1ORCID,Ke Guoju1ORCID,Qin Pengju1,Han Suli1,Guo Xiuhua1,Zhang Zhiqiang1

Affiliation:

1. College of Civil Engineering, Taiyuan University of Technology, Taiyuan 030024, China

Abstract

Because of the strong alkalinity of red mud, it is difficult to recycle, and the long-term accumulation of red mud causes environmental pollution. The study shows that the solidification characteristics of bayer red mud (RM) under the action of Ca(OH)2 (CH) are obvious. The mechanical properties of Bayer RM paste with different amounts of CH at different ages were tested. The strength of RMCH gradually increases with the increase in CH content and age, reaching a turning point in strength at 26.4% content of CH, with the highest strength at 28 days, reaching 2.73 MPa. The solidification products were characterized by XRD, FTIR, TG-DTG, and SEM-EDS. The results show that under the action of CH, the main solidification products of RM are C-(A)-S-H, hemicarboaluminate, and monocarboaluminate. In the solidification process, hydroxysodalite and faujasite-Na react with CH to generate C-S-H, Al(OH)4−, and Na+, then react to generate hemicarboaluminate, monocarboaluminate and C-(A)-S-H, among which hemicarboaluminate is transformed into monocarboaluminate in the presence of calcite, and further monocarboaluminate decomposes to generate calcite. It provides a basis for the study of the interaction mechanism between a single substance and RM and provides a research basis for the sustainable utilization of red mud.

Funder

National Science Foundation of China

Taiyuan University of Technology and Shanxi Provincial Basic Research Plan Free Exploring Projects of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3