Fault Tolerant Addressing Scheme for Oxide Interconnection Networks

Author:

Nadeem AsimORCID,Kashif AghaORCID,Zafar Sohail,Aljaedi Amer,Akanbi Oluwatobi

Abstract

The symmetry of an interconnection network plays a key role in defining the functioning of a system involving multiprocessors where thousands of processor-memory pairs known as processing nodes are connected. Addressing the processing nodes helps to create efficient routing and broadcasting algorithms for the multiprocessor interconnection networks. Oxide interconnection networks are extracted from the silicate networks having applications in multiprocessor systems due to their symmetry, smaller diameter, connectivity and simplicity of structure, and a constant number of links per node with the increasing size of the network can avoid overloading of nodes. The fault tolerant partition basis assigns unique addresses to each processing node in terms of distances (hops) from the other subnets in the network which work in the presence of faults. In this manuscript, the partition and fault tolerant partition resolvability of oxide interconnection networks have been studied which include single oxide chain networks (SOXCN), rhombus oxide networks (RHOXN) and regular triangulene oxide networks (RTOXN). Further, an application of fault tolerant partition basis in case of region-based routing in the networks is included.

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Reference34 articles.

1. Addressing, routing, and broadcasting in hexagonal mesh multiprocessors

2. Fault-tolerant routing in mesh architectures

3. Higher dimensional hexagonal networks

4. Segment-based routing: An efficient fault-tolerant routing algorithm for meshes and tori;Mejia;Proceedings of the 20th IEEE International Parallel & Distributed Processing Symposium,2006

5. Region-Based Routing: A Mechanism to Support Efficient Routing Algorithms in NoCs

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3