A Model of Water Treatment by Nanoparticles in a Channel with Adjustable Width under a Magnetic Field

Author:

Zuev SergeiORCID,Kabalyants Petr,Hussain Zakir

Abstract

The process of water treatment by nanoparticles is one of the most considerable subjects in the cross-field of hydrodynamics, chemistry, and mathematics. This paper is dedicated to the case of the flows that appear when squeezing and stretching a channel with mixing of water, nanoparticles, and contaminants. It is assumed that fluid is homogeneous at the starting moment, the parameters of the nanoparticles and contaminants are known, and there is a constant non-homogeneous magnetic field applied to the system. The flow starts moving when the walls of the channel shift to each other. Exact and numerical solutions of the system of ordinary differential equations are used to obtain the results. The article gives an answer to the question about stability of the flow and proposes the technique to evaluate the essential characteristics of the system to achieve the treatment process efficiency. The main result is that the considered system shows excellent properties concerning purification of water on the selected part of the squeezing stage. This effect does not appear without a magnetic field. The mentioned properties are: decreasing of nanoparticle concentration to zero inside of the unsteady layer under magnetic field close to 1 T and this effect stays until the channel become about 10% of initial width as a result of the squeezing.

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3