Abstract
Ongoing efforts have been made to improve the photoresponsivity of plasmonic photodetectors. In this work, the photodetectors based on transparent conductive oxide (TCO)/Semiconductor/Metal configuration especially with a roughened interface were investigated numerically, and the effect of the roughness on the injection efficiency of hot electrons was analyzed. The simulated results indicate that a roughened structure alleviates effectively the momentum mismatch of hot electrons at the metal/semiconductor interface due to asymmetry factor, and greatly improves the injection efficiency as well as photoresponsivity. At the incidence wavelength of 1550 nm, the photoresponsivity increased by about 8 times. Meanwhile, the influence on the resonant wavelength shift is negligible where the roughness is nano-scale. Our work provides a valuable guidance for the theoretical and experimental research of plasmonic photodetectors.
Funder
National Basic Research Program of China
National Natural Science Foundation of China
Excellent Youth Foundation of Jiangsu Scientific Committee
Subject
Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献