Do Artificial Neural Networks Always Provide High Prediction Performance? An Experimental Study on the Insufficiency of Artificial Neural Networks in Capacitance Prediction of the 6H-SiC/MEH-PPV/Al Diode

Author:

Çolak Andaç BaturORCID,Güzel Tamer,Shafiq AnumORCID,Nonlaopon KamsingORCID

Abstract

In this paper, we study a new model that represents the symmetric connection between capacitance–voltage and Schottky diode. This model has a symmetrical shape towards the horizontal direction. In recent times, works conducted on artificial neural network structure, which is one of the greatest actual artificial intelligence apparatuses used in various fields, stated that artificial neural networks are apparatuses that proposal very high forecast performance by the side of conventional structures. In the current investigation, an artificial neural network structure has been generated to guess the capacitance voltage productions of the Schottky diode with organic polymer edge, contingent on the frequency with a symmetrical shape. Of the dataset, 130 were grouped for training, 28 for validation, and 28 for testing. In order to evaluate the effect of the number of neurons on the prediction accuracy, three different models with different neuron numbers have been developed. This study, in which an artificial neural network model, although well-trained, could not predict the output values correctly, is a first in the literature. With this aspect, the study can be considered as a pioneering study that brings a novelty to the literature.

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3