Author:
Zhang Yi,Li Ruiwen,Heng Kai,Hu Feng
Abstract
Since terrorist attacks pose a great threat, protective structures need to be applied in terms of the safety of buildings and personnel. The installation of anti-ram bollards around buildings and infrastructures could block potential hazards, including the damage caused by car bombs and vehicular impacts on the buildings. In order to provide effective protection for buildings, the dynamic behaviors of anti-ram bollards should be examined, which is under insufficient research. In this paper, by adopting the FE program LS-DYNA, the FE models of corresponding anti-ram bollards are established, and the FEMs are validated by comparison with the experimental results of five existing vehicle crash tests. On this basis, the dynamic response of the optimized K12 anti-ram bollards under vehicular impact is numerically analyzed, and the influences of various parameters on the deformation of anti-ram bollards, as well as the displacement of the vehicle is studied.
Subject
Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献