Abstract
We use the method of field decomposition, a widely used technique in relativistic magnetohydrodynamics, to study the small velocity approximation (SVA) of the Lorentz transformation in Maxwell equations for slowly moving media. The “deformed” Maxwell equations derived using SVA in the lab frame can be put into the conventional form of Maxwell equations in the medium’s co-moving frame. Our results show that the Lorentz transformation in the SVA of up to O(v/c) (v is the speed of the medium and c is the speed of light in a vacuum) is essential to derive these equations: the time and charge density must also change when transforming to a different frame, even in the SVA, not just the position and current density, as in the Galilean transformation. This marks the essential difference between the Lorentz transformation and the Galilean one. We show that the integral forms of Faraday and Ampere equations for slowly moving surfaces are consistent with Maxwell equations. We also present Faraday equation in the covariant integral form, in which the electromotive force can be defined as a Lorentz scalar that is independent of the observer’s frame. No evidence exists to support an extension or modification of Maxwell equations.
Funder
National Natural Science Foundation of China
Subject
Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)
Reference32 articles.
1. LI. On physical lines of force
2. The Long Road to Maxwell's Equations
3. Zur Elektrodynamik bewegter Körper
4. Electromagnetic phenomena in a system moving with any velocity less than that of light;Lorentz;Proc. Acad. Sci. Amst.,1904
5. Sur la dynamique de l’électron
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献