Discrete Dynamic Model of a Disease-Causing Organism Caused by 2D-Quantum Tsallis Entropy

Author:

Al-Saidi Nadia M. G.ORCID,Yahya HusamORCID,Obaiys Suzan J.ORCID

Abstract

Many aspects of the asymmetric organ system are controlled by the symmetry model (R&L) of the disease-causing organism pathway, but sensitive matters like somites and limb buds need to be shielded from its influence. Because symmetric and asymmetric structures develop from similar or nearby matters and utilize many of the same signaling pathways, attaining symmetry is made more difficult. On this note, we aim to generalize some important measurements in view of the 2D-quantum calculus (q-calculus, q-analogues or q-disease), including the dimensional of fractals and Tsallis entropy (2D-quantum Tsallis entropy (2D-QTE)). The process is based on producing a generalization of the maximum value of the Tsallis entropy in view of the quantum calculus. Then by considering the maximum 2D-QTE, we design a discrete system. As an application, by using the 2D-QTE, we depict a discrete dynamic system that is afflicted with a disease-causing organism (DCO). We look at the system’s positive and maximum solutions. Studies are done on equilibrium and stability. We will also develop a novel design for the fundamental reproductive ratio based on the 2D-QTE.

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3