Numerical Analysis of the Crown Displacements Caused by Tunnel Excavation with Rock Bolts

Author:

Chen Shong-LoongORCID,Hsu Kuen-Jeng,Tang Chao-WeiORCID,Zhang Xiao-Ling,Lai Chia-Hung

Abstract

The complex geological structure of Taiwan often makes it difficult to control the deformation behavior of tunnel excavations. To simplify analyses, most traditional empirical formulations and modern numerical analyses do not consider the existence of rock bolts. For this reason, this study aimed to investigate the vertical displacements caused in tunnel crowns under various geological conditions using a three-dimensional finite element analysis with tunnels of different cross sections as an example. The analysis was performed using two rock material models: the Mohr–Coulomb and Hoek–Brown models. The results indicated that there was an insignificant difference between the two models in terms of the magnitudes of displacement and the distribution profiles obtained. When a tunnel was being excavated, the weaker the site was geologically and the larger the cross section, the larger the vertical crown displacement. In addition, the presence of rock bolts had a significant influence on the displacement in areas where the geology was weak and the cross section was large. The numerical analysis results of the Mohr–Coulomb and Hoek–Brown models were compared with the values calculated using the formulas suggested by Unlu and Gercek. At the excavation face, the displacement ratio derived from the prediction formula of Unlu and Gercek was smaller than the numerical analysis result, and the difference between the two became larger when the rock mass quality was worse.

Funder

the Ministry of Science and Technology of Taiwan

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3