Multi-Modal Rigid Image Registration and Segmentation Using Multi-Stage Forward Path Regenerative Genetic Algorithm

Author:

Ashfaq MunibaORCID,Minallah NasruORCID,Frnda JaroslavORCID,Behan Ladislav

Abstract

Medical image diagnosis and delineation of lesions in the human brain require information to combine from different imaging sensors. Image registration is considered to be an essential pre-processing technique of aligning images of different modalities. The brain is a naturally bilateral symmetrical organ, where the left half lobe resembles the right half lobe around the symmetrical axis. The identified symmetry axis in one MRI image can identify symmetry axes in multi-modal registered MRI images instantly. MRI sensors may induce different levels of noise and Intensity Non-Uniformity (INU) in images. These image degradations may cause difficulty in finding true transformation parameters for an optimization technique. We will be investigating the new variant of evolution strategy of genetic algorithm as an optimization technique that performs well even for the high level of noise and INU, compared to Nesterov, Limited-memory Broyden–Fletcher–Goldfarb–Shanno algorithm (LBFGS), Simulated Annealing (SA), and Single-Stage Genetic Algorithm (SSGA). The proposed new multi-modal image registration technique based on a genetic algorithm with increasing precision levels and decreasing search spaces in successive stages is called the Multi-Stage Forward Path Regenerative Genetic Algorithm (MFRGA). Our proposed algorithm is better in terms of overall registration error as compared to the standard genetic algorithm. MFRGA results in a mean registration error of 0.492 in case of the same level of noise (1–9)% and INU (0–40)% in both reference and template image, and 0.317 in case of a noise-free template and reference with noise levels (1–9)% and INU (0–40)%. Accurate registration results in good segmentation, and we apply registration transformations to segment normal brain structures for evaluating registration accuracy. The brain segmentation via registration with our proposed algorithm is better even in cases of high levels of noise and INU as compared to GA and LBFGS. The mean dice similarity coefficient of brain structures CSF, GM, and WM is 0.701, 0.792, and 0.913, respectively.

Funder

Ministry of Education, Youth and Sports of the Czech Republic

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Reference42 articles.

1. Deep learning in medical image registration: a survey

2. A Spatial Registration Toolbox for Structural MR Imaging of the Aging Brain

3. Detection and stagewise classification of Alzheimer disease using deep learning methods;Pushpa;Int. J. Recent Technol. Eng. (IJRTE),2019

4. Privacy-Preserving Image Retrieval for Medical IoT Systems: A Blockchain-Based Approach

5. The image registration techniques for medical imaging (MRI-CT);Mohammed;Am. J. Biomed. Eng.,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3