Computational Study of Methods for Determining the Elasticity of Red Blood Cells Using Machine Learning

Author:

Molčan SamuelORCID,Smiešková MonikaORCID,Bachratý HynekORCID,Bachratá KatarínaORCID

Abstract

RBC (Red Blood Cell) membrane is a highly elastic structure, and proper modelling of this elasticity is essential for biomedical applications that involve computational experiments with blood flow. In this work, we present a new method for estimating one of the key parameters of red blood cell elasticity, which uses a neural network trained on the simulation outputs. We test classic LSTM (Long-Short Term Memory) architecture for the time series regression task, and we also experiment with novel CNN-LSTM (Convolutional Neural Network) architecture. We paid special attention to investigating the impact of the way the three-dimensional training data are reduced to their two-dimensional projections. Such a comparison is possible thanks to working with simulation outputs that are equivalently defined for all dimensions and their combinations. The obtained results can be used as recommendations for an appropriate way to record real experiments for which the reduced dimension of the acquired data is essential.

Funder

Integrated strategy in the development of personalized medicine of selected malignant tumor diseases and its impact on life quality

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3