Electrical and Magnetic Transport Properties of Co2VGa Half-Metallic Heusler Alloy

Author:

Yu Litao,Li ZheORCID,Zhu Jiajun,Liu Hongwei,Zhang Yuanlei,Cao Yiming,Xu Kun,Liu Yongsheng

Abstract

This study performed a systematic experimental investigation into the structural, magnetic, and transport properties of the Co2VGa Heusler alloy, which was theoretically predicted to exhibit half-metallic ferromagnetism. It has been experimentally found that the studied alloy has a relatively high-ordered L21 cubic structure at room temperature and orders ferromagnetically below ~350 K. Interestingly, by fitting the electric transport data with the properly governing equations in two different temperature regions, the two-magnon scattering process (the T9/2 dependence) appears in the temperature range from 30 to 75 K. Moreover, the magnetoresistance effect changes from a negative value to a positive value when the temperature is below 100 K. Such experimental findings provide indirect evidence that the half-metallic nature of this alloy is retained only when the temperature is below 100 K. On the other hand, the magnetic transport measurements indicate that the anomalous Hall coefficient of this alloy increases when the temperature increases and reaches a relatively high value (~8.3 μΩ·cm/T) at 300 K due to its lower saturated magnetization. By analyzing the anomalous Hall resistivity scale with the longitudinal resistivity, it was also found that the anomalous Hall effect can be ascribed to the combined effect of extrinsic skew scattering and intrinsic Berry curvature, but the latter contribution plays a dominant role.

Funder

National Natural Science Foundation of China

Program of Shanghai Academic/Technology Research Leader

Local Colleges Applied Basic Research Projects of Yunnan Province

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3