Author:
Thabit Qahtan,Nassour Abdallah,Nelles Michael
Abstract
Thermal water desalination is one of the most important techniques to solve the water scarcity problem in many regions of the world. Out of around 7.8 billion people in the world, only about 6 billion of them have access to clean water; notably, climate change plays a major role in accelerating the evaporation rate of water from water bodies, which in turn increases the scarcity. Multi-stage flash, recognized to have a high rate of water production in comparison with other available technologies, accounts for 35% of water desalination facilities worldwide. This paper presents a detailed Excel model to evaluate the amount of energy required to drive 16 stages of multi-stage flash. This model aims to design and evaluate the amount of thermal energy required for such projects and optimize their performance by calibrating the governing parameters. Furthermore, the 16 stages were simulated via the Ebsilon 13.02 software package to match the results and evaluate the fulfillment of the plant requirements. The temperature drop of the brine stream was 2.34 °C/stage. The top brine temperature was 130 °C. The results show that 29.5 kg/s of superheated steam is required to desalinate 162 kg/s of 2500 kg/s influent mass flow of brine. The effect of water intake temperature was also examined by using Ebsilon. The performance ratio decreased from 5.49 to 2.66 when the water intake temperature decreased from 30 °C to 5 °C.
Subject
General Materials Science
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献