Study on Coated Zr-V-Cr Getter with Pore Gradient Structure for Hydrogen Masers

Author:

Zhang Jiale,Song Huihui,Fang Jinyu,Hou XuelingORCID,Huang Shuiming,Xiang Jie,Lu Tao,Zhou Chao

Abstract

As the core component of satellite navigation, the hydrogen maser needs a high vacuum environment to maintain the stability of the frequency signal. The getter pump, composed of various non-evaporable getters, plays an important role in maintaining the high vacuum. In this paper, the Zr100-xCux (x = 0, 2, 4, 6)/Zr56.97V35.85Cr7.18 getter was studied and the contradiction between sorption performance and mechanical properties was solved. The Zr-V-Cr getter, a better candidate for getter pump, exists for problems which will destroy the high vacuum and affect the service life of the hydrogen maser. To solve the problem of dropping powder from Zr-V-Cr getter, Zr-Cu films were coated on the surface of Zr-V-Cr matrix to obtain the pore gradient structure. After vacuum sintering, the interface showed gradient structure and network change in pore structure from Zr-Cu film to Zr-V-Cr matrix. These characteristic structures made Zr-V-Cr getter have good absorption properties, which is better than a similar product of SAES company and mechanical properties. Because the Zr-Cu film on Zr-V-Cr matrix effectively prevented dropping powders from the matrix, (Zr-Cu)/(Zr-V-Cr) getter solved the problem of dropping powder. The self-developed new getter with pore gradient structure is of great significance for maintaining the high vacuum of hydrogen maser in the future.

Publisher

MDPI AG

Subject

General Materials Science

Reference26 articles.

1. Space passive hy-drogen maser a passive hydrogen maser for space applications;Li;Proceedings of the IEEE International Frequency Control Symposium,2016

2. Performance evaluation of Galileo on-board passive hydrogen maser;Qin;J. Instrum.,2018

3. Research on a material for hydrogen purifying and flux controlling with application to space active hydrogen-masers

4. Performaces and telemetres analysis of BD satellite passive hydrogen maser;Chen;Sci. Sin. Phys. Mech. Astron.,2021

5. Development of mini space passive hydrogen maser;Pan;Lect. Notes Electr. Eng.,2020

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3