Life Cycle Assessment of Poplar Biomass for High Value Products and Energy

Author:

Krzyżaniak Michał1ORCID,Stolarski Mariusz J.1ORCID,Warmiński Kazimierz2ORCID,Rój Edward3,Tyśkiewicz Katarzyna3ORCID,Olba-Zięty Ewelina1ORCID

Affiliation:

1. Department of Genetics, Plant Breeding and Bioresource Engineering, Faculty of Agriculture and Forestry, University of Warmia and Mazury in Olsztyn, Plac Łódzki 3, 10-724 Olsztyn, Poland

2. Department of Chemistry, Faculty of Agriculture and Forestry, University of Warmia and Mazury in Olsztyn, Plac Łódzki 4, 10-957 Olsztyn, Poland

3. Supercritical Extraction Research Group, Łukasiewicz Research Network—New Chemical Syntheses Institute, Al. Tysiąclecia Państwa Polskiego 13a, 24-110 Puławy, Poland

Abstract

The European Union has embarked on a European Green Deal programme that advocates for a transition from fossil fuels to sustainable production. Attempts are being made to identify biomass sources and bioproducts (pharmaceuticals, cosmetics, or biofuels) that do not compete significantly with food production and have a low environmental impact. Therefore, the aim of this study was to determine the environmental impact of the supercritical CO2 extraction of poplar biomass in a life cycle assessment (LCA). The production system was examined in a cradle-to-gate approach. In the analysed system, poplar biomass was extracted, and residual biomass was converted to pellets which were used to generate process heat. The functional unit was 1 kg of packaged extract. The results showed that the step of biomass extraction using S-CO2 (in subsystem II) made the greatest contribution to all but two impact categories, with contribution from 25.3% to 93.8% for land use and global warming categories, respectively. In contrast, the whole subsystem I (biomass production and logistics) had a low environmental impact. Heat generation from residual biomass led to a minor decrease in the system’s environmental impact. Greenhouse gases emission reached 440 kg of CO2 equivalents per 1 kg of the extract, and they were associated with high electricity consumption and steam production. Despite the application of residual biomass for heat generation, the overall environmental impacts, especially in terms of human health and ecosystem damage, remain significant, indicating the need for further optimisation and mitigation strategies in the production process. Moreover, the share of renewables in the energy mix supplied to biorefineries should mitigate the environmental impact of the extraction process.

Funder

University of Warmia and Mazury in Olsztyn, Faculty of Agriculture and Forestry, Department of Genetics, Plant Breeding and Bioresource Engineering

National (Polish) Centre for Research and Development

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3