Novel Control Approach for Resonant Class-DE Inverters Applied in Wireless Power Transfer Systems

Author:

Avilés Juan Pablo Ochoa1,Tofoli Fernando Lessa2ORCID,Ribeiro Enio Roberto1ORCID

Affiliation:

1. Institute of System Engineering and Information Technology, Federal University of Itajubá, Itajubá 37500-903, Brazil

2. Department of Electrical Engineering, Federal University of São João del-Rei, São João del-Rei 36307-352, Brazil

Abstract

Regulating the load voltage is of major importance for ensuring high transmission efficiency in wireless power transfer (WPT) systems. In this context, this work presents a novel control strategy applied in the dc-ac converter used in the primary side of a WPT system. The performance of a class-DE resonant inverter is investigated considering that such topology presents inherent soft-switching characteristics, thus implying reduced switching losses. The controller relies on an autoregressive with exogenous output (ARX) model based on an adaptive linear neuron (ADALINE) network, which allows for determining the turn-on time of the active switches accurately while providing the system with the ability to adapt to distinct alignment conditions. The performance of the proposed controller is compared with that of a linear controller, which does not prove to be an effective solution if misalignment occurs.

Funder

Coordination for the Improvement of Higher Education Personnel

Brazilian National Council for Scientific and Technological Development

Minas Gerais Research Funding Foundation

National Institute of Science and Technology in Electric Energy

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3