Simulated Impact of Shortened Strings in Commercial and Utility-Scale Photovoltaic Arrays

Author:

Smith Ryan M.1ORCID,Matam Manjunath2ORCID,Seigneur Hubert2ORCID

Affiliation:

1. Pordis LLC, Austin, TX 78729, USA

2. Florida Solar Energy Center, University of Central Florida, Cocoa, FL 32922, USA

Abstract

The deliberate removal of photovoltaic modules from a string can occur for various reasons encompassing maintenance, measurements, theft, or failure, reducing that string length relative to others when replacement modules are not available and there are not any viable alternative makes and models that could be inserted. This phenomenon, delineated in our prior experimentally validated research, manifests two significant effects: (1) a shift in the ideal maximum power point and (2) the induction of potentially substantial reverse currents in the shortened strings at open-circuit voltage, VOC. However, the scalability and asymptotic limits of these observed behaviors concerning array size remained undetermined. In this study, we elucidate the operational dynamics of such arrays by manipulating two mismatch-contributing variables in simulated arrays of up to 900 strings: the number of removed modules per string (indicative of the level of mismatch, ranging up to 5) and the quantity of shortened strings (1 to 60). Simulation outcomes underscore that mismatch severity impacts array operation more than the proportion of shortened strings. This research delves into the practical ramifications of operating with shortened strings, including implications for low-irradiance operation and the manifestation of deleterious reverse currents (>35 A in specific cases), emphasizing the need for careful array configuration for optimal performance and safety in these implementations.

Funder

U.S. Department of Energy’s Solar Energy Technologies Office

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3