Multi-Level Feature-Refinement Anchor-Free Framework with Consistent Label-Assignment Mechanism for Ship Detection in SAR Imagery

Author:

Zhou Yun1,Wang Sensen1,Ren Haohao1,Hu Junyi1,Zou Lin1,Wang Xuegang1

Affiliation:

1. School of Information Communication and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China

Abstract

Deep learning-based ship-detection methods have recently achieved impressive results in the synthetic aperture radar (SAR) community. However, numerous challenging issues affecting ship detection, such as multi-scale characteristics of the ship, clutter interference, and densely arranged ships in complex inshore, have not been well solved so far. Therefore, this article puts forward a novel SAR ship-detection method called multi-level feature-refinement anchor-free framework with a consistent label-assignment mechanism, which is capable of boosting ship-detection performance in complex scenes. First, considering that SAR ship detection is susceptible to complex background interference, we develop a stepwise feature-refinement backbone network to refine the position and contour of the ship object. Next, we devise an adjacent feature-refined pyramid network following the backbone network. The adjacent feature-refined pyramid network consists of the sub-pixel sampling-based adjacent feature-fusion sub-module and adjacent feature-localization enhancement sub-module, which can improve the detection capability of multi-scale objects by mitigating multi-scale high-level semantic loss and enhancing low-level localization features. Finally, to solve the problems of unbalanced positive and negative samples and densely arranged ship detection, we propose a consistent label-assignment mechanism based on consistent feature scale constraints to assign more appropriate and consistent labels to samples. Extensive qualitative and quantitative experiments on three public datasets, i.e., SAR Ship-Detection Dataset (SSDD), High-Resolution SAR Image Dataset (HRSID), and SAR-Ship-Dataset illustrate that the proposed method is superior to many state-of-the-art SAR ship-detection methods.

Funder

National Science Foundation of China

Publisher

MDPI AG

Reference48 articles.

1. A CFAR adaptive matched filter detector;Robey;IEEE Trans. Aerosp. Electron. Syst.,1992

2. Recursive estimation of the covariance matrix of a compound-Gaussian process and its application to adaptive CFAR detection;Conte;IEEE Trans. Signal Process.,2002

3. A CFAR adaptive subspace detector based on a single observation in system-dependent clutter background;Lei;IEEE Trans. Signal Process.,2014

4. A modified CFAR algorithm based on object proposals for ship target detection in SAR images;Dai;IEEE Geosci. Remote Sens. Lett.,2016

5. A CFAR detection algorithm for generalized gamma distributed background in high-resolution SAR images;Qin;IEEE Geosci. Remote Sens. Lett.,2012

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3