Evaluating the Point Cloud of Individual Trees Generated from Images Based on Neural Radiance Fields (NeRF) Method

Author:

Huang Hongyu123ORCID,Tian Guoji123,Chen Chongcheng123

Affiliation:

1. National Engineering Research Center of Geospatial Information Technology, Fuzhou University, Fuzhou 350108, China

2. Key Laboratory of Spatial Data Mining and Information Sharing of Ministry of Education, Fuzhou University, Fuzhou 350108, China

3. The Academy of Digital China (Fujian), Fuzhou 350108, China

Abstract

Three-dimensional (3D) reconstruction of trees has always been a key task in precision forestry management and research. Due to the complex branch morphological structure of trees themselves and the occlusions from tree stems, branches and foliage, it is difficult to recreate a complete three-dimensional tree model from a two-dimensional image by conventional photogrammetric methods. In this study, based on tree images collected by various cameras in different ways, the Neural Radiance Fields (NeRF) method was used for individual tree dense reconstruction and the exported point cloud models are compared with point clouds derived from photogrammetric reconstruction and laser scanning methods. The results show that the NeRF method performs well in individual tree 3D reconstruction, as it has a higher successful reconstruction rate, better reconstruction in the canopy area and requires less images as input. Compared with the photogrammetric dense reconstruction method, NeRF has significant advantages in reconstruction efficiency and is adaptable to complex scenes, but the generated point cloud tend to be noisy and of low resolution. The accuracy of tree structural parameters (tree height and diameter at breast height) extracted from the photogrammetric point cloud is still higher than those derived from the NeRF point cloud. The results of this study illustrate the great potential of the NeRF method for individual tree reconstruction, and it provides new ideas and research directions for 3D reconstruction and visualization of complex forest scenes.

Funder

University-Industry Cooperation Project in Fujian Province

International Cooperation Project of Fujian Province

Leading Talents of Scientific and Technological Innovation in Fujian Province, China

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3