Band Selection via Band Density Prominence Clustering for Hyperspectral Image Classification

Author:

Chang Chein-I123ORCID,Kuo Yi-Mei2,Ma Kenneth Yeonkong2ORCID

Affiliation:

1. Center for Hyperspectral Imaging in Remote Sensing (CHIRS), Information and Technology College, Dalian Maritime University, Dalian 116026, China

2. Remote Sensing Signal and Image Processing Laboratory, Department of Computer Science and Electrical Engineering, University of Maryland, Baltimore County (UMBC), MD 21250, USA

3. Department of Electrical Engineering, National Cheng Kung University, Tainan 70101, Taiwan

Abstract

Band clustering has been widely used for hyperspectral band selection (BS). However, selecting an appropriate band to represent a band cluster is a key issue. Density peak clustering (DPC) provides an effective means for this purpose, referred to as DPC-based BS (DPC-BS). It uses two indicators, cluster density and cluster distance, to rank all bands for BS. This paper reinterprets cluster density and cluster distance as band local density (BLD) and band distance (BD) and also introduces a new concept called band prominence value (BPV) as a third indicator. Combining BLD and BD with BPV derives new band prioritization criteria for BS, which can extend the currently used DPC-BS to a new DPC-BS method referred to as band density prominence clustering (BDPC). By taking advantage of the three key indicators of BDPC, i.e., cut-off band distance bc, k nearest neighboring-band local density, and BPV, two versions of BDPC can be derived called bc-BDPC and k-BDPC, both of which are quite different from existing DPC-based BS methods in three aspects. One is that the parameter bc of bc-BDPC and the parameter k of k-BDPC can be automatically determined by the number of clusters and virtual dimensionality (VD), respectively. Another is that instead of using Euclidean distance, a spectral discrimination measure is used to calculate BD as well as inter-band correlation. The most important and significant aspect is a novel idea that combines BPV with BLD and BD to derive new band prioritization criteria for BS. Extensive experiments demonstrate that BDPC generally performs better than DPC-BS as well as many current state-of-the art BS methods.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3