A Region-Adaptive Local Perturbation-Based Method for Generating Adversarial Examples in Synthetic Aperture Radar Object Detection

Author:

Duan Jiale12ORCID,Qiu Linyao3,He Guangjun4,Zhao Ling1ORCID,Zhang Zhenshi5,Li Haifeng12ORCID

Affiliation:

1. School of Geosciences and Info-Physics, Central South University, South Lushan Road, Changsha 410083, China

2. Xiangjiang Laboratory, Changsha 410205, China

3. China Academy of Electronics and Information Technology, Shuangyuan Road, Beijing 100041, China

4. State Key Laboratory of Space-Ground Integrated Information Technology, Beijing Institute of Satellite Information Engineering, Beijing 100086, China

5. College of Basic Education, National University of Defense Technology, Changsha 410073, China

Abstract

In synthetic aperture radar (SAR) imaging, intelligent object detection methods are facing significant challenges in terms of model robustness and application security, which are posed by adversarial examples. The existing adversarial example generation methods for SAR object detection can be divided into two main types: global perturbation attacks and local perturbation attacks. Due to the dynamic changes and irregular spatial distribution of SAR coherent speckle backgrounds, the attack effectiveness of global perturbation attacks is significantly reduced by coherent speckle. In contrast, by focusing on the image objects, local perturbation attacks achieve targeted and effective advantages over global perturbations by minimizing interference from the SAR coherent speckle background. However, the adaptability of conventional local perturbations is limited because they employ a fixed size without considering the diverse sizes and shapes of SAR objects under various conditions. This paper presents a framework for region-adaptive local perturbations (RaLP) specifically designed for SAR object detection tasks. The framework consists of two modules. To address the issue of coherent speckle noise interference in SAR imagery, we develop a local perturbation generator (LPG) module. By filtering the original image, this module reduces the speckle features introduced during perturbation generation. It then superimposes adversarial perturbations in the form of local perturbations on areas of the object with weaker speckles, thereby reducing the mutual interference between coherent speckles and adversarial perturbation. To address the issue of insufficient adaptability in terms of the size variation in local adversarial perturbations, we propose an adaptive perturbation optimizer (APO) module. This optimizer adapts the size of the adversarial perturbations based on the size and shape of the object, effectively solving the problem of adaptive perturbation size and enhancing the universality of the attack. The experimental results show that RaLP reduces the detection accuracy of the YOLOv3 detector by 29.0%, 29.9%, and 32.3% on the SSDD, SAR-Ship, and AIR-SARShip datasets, respectively, and the model-to-model and dataset-to-dataset transferability of RaLP attacks are verified.

Funder

National Natural Science Foundation of China

Major Program Project of Xiangjiang Laboratory

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3