Effects of the Construction of Granadilla Industrial Port in Seagrass and Seaweed Habitats Using Very-High-Resolution Multispectral Satellite Imagery

Author:

Mederos-Barrera Antonio1ORCID,Sevilla José2,Marcello Javier1ORCID,Espinosa José María2,Eugenio Francisco1ORCID

Affiliation:

1. Instituto de Oceanografía y Cambio Global, Universidad de Las Palmas de Gran Canaria, Unidad Asociada ULPGC-CSIC, Campus Universitario de Tafira, 35017 Las Palmas de Gran Canaria, Spain

2. Fundación del Sector Público Estatal Observatorio Ambiental Granadilla, Vía Interior del Puerto de Santa Cruz de Tenerife, Edificio Puerto-Ciudad, 38001 Santa Cruz de Tenerife, Spain

Abstract

Seagrass and seaweed meadows hold a very important role in coastal and marine ecosystems. However, anthropogenic impacts pose risks to these delicate habitats. This paper analyses the multitemporal impact of the construction of the largest industrial port in the Canary Islands, near the Special Area of Conservation Natura 2000, on Cymodocea nodosa seagrass meadows (sebadales) of the South of Tenerife, in the locality of Granadilla (Canary Islands, Spain). Very-high-resolution WorldView-2 multispectral satellite data were used for the analysis. Specifically, three images were selected before, during, and after the construction of the port (2011, 2014, and 2022, correspondingly). Initially, advanced pre-processing of the images was performed, and then seabed maps were obtained using the machine learning K-Nearest Neighbors (KNN) supervised classification model, discriminating 12 different bottom types in Case-2 complex waters. The maps achieved high-quality metrics with Precision values of 85%, 81%, and 80%, recall of 76%, 77%, and 77%, and F1 scores of 80%, 79%, and 77% for 2011, 2014, and 2022, respectively. The results mainly show that the construction directly affected the seagrass and seaweed habitats. In particular, the impact of the port on the meadows of Cymodocea nodosa, Caulerpa prolifera, and maërl was assessed. The total maërl population was reduced by 1.9 km2 throughout the study area. However, the Cymodocea nodosa population was maintained at the cost of colonizing maërl areas. Furthermore, the port sedimented a total of 0.98 km2 of seabed, especially Cymodocea nodosa and maërl. In addition, it was observed that Caulerpa prolifera was established as a meadow at the entrance of the port, replacing part of the Cymodocea nodosa and maërl areas. As additional results, bathymetric maps were generated from satellite imagery with the Sigmoid model, and the presence of a submarine outfall was, as well, presented.

Publisher

MDPI AG

Reference52 articles.

1. Green, E.P., and Short, F.T. (2003). World Atlas of Seagrasses, University of California Press.

2. Hemminga, M.A., and Duarte, C.M. (2000). Seagrass Ecology, Cambridge University Press.

3. Björk, M., Short, F., Mcleod, E., and Beer, S. (2008). Managing Seagrasses for Resilience to Climate Change (No. 3), IUCN.

4. The fate of marine autotrophic production;Duarte;Limnol. Oceanogr.,1996

5. The future of seagrass meadows;Duarte;Environ. Conserv.,2002

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3