Application of Polynomial Interpolation for Iterative Complementation of the Missing Nodes in a Regular Network of Squares Used for the Construction of a Digital Terrain Model

Author:

Gościewski Dariusz1ORCID,Gerus-Gościewska Małgorzata2ORCID,Szczepańska Agnieszka3ORCID

Affiliation:

1. Department of Geodesy, Institute of Geodesy and Civil Engineering, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1, 10-719 Olsztyn, Poland

2. Department of Geoinformation and Cartography, Institute of Geodesy and Civil Engineering, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Heweliusza 12, 10-720 Olsztyn, Poland

3. Department of Socio-Economic Geography, Institute of Spatial Management and Geography, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 15, 10-724 Olsztyn, Poland

Abstract

Due to the continuous increase in the volume of spatially located information, the current requirements imposed on the Spatial Information System (SIS) concern increasing data mining capabilities. Modern measurement systems, based on devices which enable the automatic recording of observation results on a mass scale (LiDAR—Light Detection and Ranging, MBES—Multi Beam Echo Sounder, etc.), allow for a very large volume of information on the surface to be measured and acquired in a relatively short time. One of the methods to reduce the volume of data enabling the generation of a model surface is to convert unevenly distributed measurement points into a regular network of squares (GRID). However, the generation of a complete grid is not always possible. In the measurement spectrum, there may be areas where measurement points have not been recorded. Measurement points can also be eliminated by either filtering the erroneously recorded data or eliminating the measured vegetation or the utilities in the area. To address these problems, the current article proposes a method for complementing the missing internal nodes in a regular network of squares using polynomial interpolation algorithms. Moreover, the paper demonstrates the possibilities of using the presented method for adding additional points between the already existing nodes of the network of squares. The application of the methodology presented in this article enables the effective elimination of (or a reduction in) the gaps in the GRID structure, which, in turn, allows such a network of squares to be used to generate a more accurate Digital Terrain Model.

Publisher

MDPI AG

Reference73 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3