MFIL-FCOS: A Multi-Scale Fusion and Interactive Learning Method for 2D Object Detection and Remote Sensing Image Detection

Author:

Zhang Guoqing123ORCID,Yu Wenyu1,Hou Ruixia4

Affiliation:

1. School of Computer Science, Nanjing University of Information Science and Technology, Nanjing 210044, China

2. Jiangsu Key Laboratory of Image and Video Understanding for Social Safety, Nanjing University of Science and Technology, Nanjing 210094, China

3. Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), Nanjing University of Information Science & Technology, Nanjing 210044, China

4. Research Institute of Resource Information Techniques, Chinese Academy of Forestry (CAF), Beijing 100091, China

Abstract

Object detection is dedicated to finding objects in an image and estimate their categories and locations. Recently, object detection algorithms suffer from a loss of semantic information in the deeper feature maps due to the deepening of the backbone network. For example, when using complex backbone networks, existing feature fusion methods cannot fuse information from different layers effectively. In addition, anchor-free object detection methods fail to accurately predict the same object due to the different learning mechanisms of the regression and centrality of the prediction branches. To address the above problem, we propose a multi-scale fusion and interactive learning method for fully convolutional one-stage anchor-free object detection, called MFIL-FCOS. Specifically, we designed a multi-scale fusion module to address the problem of local semantic information loss in high-level feature maps which strengthen the ability of feature extraction by enhancing the local information of low-level features and fusing the rich semantic information of high-level features. Furthermore, we propose an interactive learning module to increase the interactivity and more accurate predictions by generating a centrality-position weight adjustment regression task and a centrality prediction task. Following these strategic improvements, we conduct extensive experiments on the COCO and DIOR datasets, demonstrating its superior capabilities in 2D object detection tasks and remote sensing image detection, even under challenging conditions.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Jiangsu Province of China

Publisher

MDPI AG

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3