Abstract
Raman spectroscopy is a novel tool used in the on-line monitoring and control of bioprocesses, offering both quantitative and qualitative determination of key process variables through spectroscopic analysis. However, the wide-spread application of Raman spectroscopy analysers to industrial fermentation processes has been hindered by problems related to the high background fluorescence signal associated with the analysis of biological samples. To address this issue, we investigated the influence of fluorescence on the spectra collected from two Raman spectroscopic devices with different wavelengths and detectors in the analysis of the critical process parameters (CPPs) and critical quality attributes (CQAs) of a fungal fermentation process. The spectra collected using a Raman analyser with the shorter wavelength (903 nm) and a charged coupled device detector (CCD) was corrupted by high fluorescence and was therefore unusable in the prediction of these CPPs and CQAs. In contrast, the spectra collected using a Raman analyser with the longer wavelength (993 nm) and an indium gallium arsenide (InGaAs) detector was only moderately affected by fluorescence and enabled the generation of accurate estimates of the fermentation’s critical variables. This novel work is the first direct comparison of two different Raman spectroscopy probes on the same process highlighting the significant detrimental effect caused by high fluorescence on spectra recorded throughout fermentation runs. Furthermore, this paper demonstrates the importance of correctly selecting both the incident wavelength and detector material type of the Raman spectroscopy devices to ensure corrupting fluorescence is minimised during bioprocess monitoring applications.
Funder
Engineering and Physical Sciences Research Council
Reference40 articles.
1. Modern Raman Spectroscopy: A Practical Approach;Smith,2013
2. Raman Spectroscopy for Chemical Analysis;McCreery,2005
3. Process Analytical Technology for Advanced Process Control in Biologics Manufacturing with the Aid of Macroscopic Kinetic Modeling
4. Guidance for Industry: PAT—A Framework for Innovative Pharmaceutical Development, Manufacturing, and Quality Assurance,2004
5. Bioreactor monitoring with spectroscopy and chemometrics: a review
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献