Influence of Incident Wavelength and Detector Material Selection on Fluorescence in the Application of Raman Spectroscopy to a Fungal Fermentation Process

Author:

Goldrick Stephen,Lovett David,Montague Gary,Lennox BarryORCID

Abstract

Raman spectroscopy is a novel tool used in the on-line monitoring and control of bioprocesses, offering both quantitative and qualitative determination of key process variables through spectroscopic analysis. However, the wide-spread application of Raman spectroscopy analysers to industrial fermentation processes has been hindered by problems related to the high background fluorescence signal associated with the analysis of biological samples. To address this issue, we investigated the influence of fluorescence on the spectra collected from two Raman spectroscopic devices with different wavelengths and detectors in the analysis of the critical process parameters (CPPs) and critical quality attributes (CQAs) of a fungal fermentation process. The spectra collected using a Raman analyser with the shorter wavelength (903 nm) and a charged coupled device detector (CCD) was corrupted by high fluorescence and was therefore unusable in the prediction of these CPPs and CQAs. In contrast, the spectra collected using a Raman analyser with the longer wavelength (993 nm) and an indium gallium arsenide (InGaAs) detector was only moderately affected by fluorescence and enabled the generation of accurate estimates of the fermentation’s critical variables. This novel work is the first direct comparison of two different Raman spectroscopy probes on the same process highlighting the significant detrimental effect caused by high fluorescence on spectra recorded throughout fermentation runs. Furthermore, this paper demonstrates the importance of correctly selecting both the incident wavelength and detector material type of the Raman spectroscopy devices to ensure corrupting fluorescence is minimised during bioprocess monitoring applications.

Funder

Engineering and Physical Sciences Research Council

Publisher

MDPI AG

Subject

Bioengineering

Reference40 articles.

1. Modern Raman Spectroscopy: A Practical Approach;Smith,2013

2. Raman Spectroscopy for Chemical Analysis;McCreery,2005

3. Process Analytical Technology for Advanced Process Control in Biologics Manufacturing with the Aid of Macroscopic Kinetic Modeling

4. Guidance for Industry: PAT—A Framework for Innovative Pharmaceutical Development, Manufacturing, and Quality Assurance,2004

5. Bioreactor monitoring with spectroscopy and chemometrics: a review

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3