The Effect of Carbon Monoxide on the Exergy Behavior of the Lungs

Author:

Cenzi Juliana,Albuquerque Cyro,Keutenedjian Mady Carlos

Abstract

The present work evaluates the impact of carbon monoxide (CO) inhalation on the human lung’s exergy behavior by considering different levels of intoxication and amounts of hemoglobin. Its impact is significant because CO is one of the most common air pollutants in cities and an increase in destroyed exergy may be correlated with lifespan reduction or the malfunctioning of certain human organs. An evaluation of the severity of intoxication as a function of city altitude may intensify the hazard associated with carbon monoxide. A computational model of human lungs obtained from the literature was used to calculate the concentrations of oxygen (O2), carbon monoxide (CO), and carbon dioxide (CO2) in the respiratory system. With the purpose of better evaluating the different levels of CO intoxication and hemoglobin concentration (which is a function of acclimatization time and some pathologies, such as anemia), a model calculating exergy efficiency for the lungs was proposed. From this model, it was possible to conclude that a higher level of intoxication is associated with lower exergy efficiency values. When associated with carbon monoxide intoxication, higher hemoglobin levels also result in lower efficiency. Eventually, a comparison between previous studies and the current study was carried out, regarding the method employed to calculate the exergy destroyed in the lungs, considering not only gas transport, but also hemoglobin concentration and its reaction with the gases from a second law perspective.

Funder

Fundação de Amparo à Pesquisa do Estado de São Paulo

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Publisher

MDPI AG

Subject

Bioengineering

Reference20 articles.

1. Exergy Analysis of Thermal, Chemical and Metallurgical Processes;Szargut,1988

2. Human body exergy analysis and the assessment of thermal comfort conditions

3. Exergy performance of human body under physical activities

4. Where has entropy gone: Theory of general system (II);Wang;arxiv,1996

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3