Prediction of Glucose Concentration in Children with Type 1 Diabetes Using Neural Networks: An Edge Computing Application

Author:

D’Antoni FedericoORCID,Petrosino Lorenzo,Sgarro Fabiola,Pagano Antonio,Vollero LucaORCID,Piemonte VincenzoORCID,Merone MarioORCID

Abstract

Background: Type 1 Diabetes Mellitus (T1D) is an autoimmune disease that can cause serious complications that can be avoided by preventing the glycemic levels from exceeding the physiological range. Straightforwardly, many data-driven models were developed to forecast future glycemic levels and to allow patients to avoid adverse events. Most models are tuned on data of adult patients, whereas the prediction of glycemic levels of pediatric patients has been rarely investigated, as they represent the most challenging T1D population. Methods: A Convolutional Neural Network (CNN) and a Long Short-Term Memory (LSTM) Recurrent Neural Network were optimized on glucose, insulin, and meal data of 10 virtual pediatric patients. The trained models were then implemented on two edge-computing boards to evaluate the feasibility of an edge system for glucose forecasting in terms of prediction accuracy and inference time. Results: The LSTM model achieved the best numeric and clinical accuracy when tested in the .tflite format, whereas the CNN achieved the best clinical accuracy in uint8. The inference time for each prediction was far under the limit represented by the sampling period. Conclusion: Both models effectively predict glucose in pediatric patients in terms of numerical and clinical accuracy. The edge implementation did not show a significant performance decrease, and the inference time was largely adequate for a real-time application.

Funder

Progetti di Gruppi di Ricerca 2020

Publisher

MDPI AG

Subject

Bioengineering

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3