In Vitro Cancer Models: A Closer Look at Limitations on Translation

Author:

Antunes Nina,Kundu BananiORCID,Kundu Subhas C.ORCID,Reis Rui L.,Correlo VítorORCID

Abstract

In vitro cancer models are envisioned as high-throughput screening platforms for potential new therapeutic discovery and/or validation. They also serve as tools to achieve personalized treatment strategies or real-time monitoring of disease propagation, providing effective treatments to patients. To battle the fatality of metastatic cancers, the development and commercialization of predictive and robust preclinical in vitro cancer models are of urgent need. In the past decades, the translation of cancer research from 2D to 3D platforms and the development of diverse in vitro cancer models have been well elaborated in an enormous number of reviews. However, the meagre clinical success rate of cancer therapeutics urges the critical introspection of currently available preclinical platforms, including patents, to hasten the development of precision medicine and commercialization of in vitro cancer models. Hence, the present article critically reflects the difficulty of translating cancer therapeutics from discovery to adoption and commercialization in the light of in vitro cancer models as predictive tools. The state of the art of in vitro cancer models is discussed first, followed by identifying the limitations of bench-to-bedside transition. This review tries to establish compatibility between the current findings and obstacles and indicates future directions to accelerate the market penetration, considering the niche market.

Funder

CCDR-N - Northern Regional Development and Coordination Commission; NORTE2020; FEDER - Fundo Europeu de Desenvolvimento Regional

Fundação para a Ciência e Tecnologia

Publisher

MDPI AG

Subject

Bioengineering

Reference111 articles.

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3