In-Silico Modeling to Compare Radiofrequency-Induced Thermal Lesions Created on Myocardium and Thigh Muscle

Author:

Pérez Juan J.,Berjano EnriqueORCID,González-Suárez Ana

Abstract

Beating heart (BH) and thigh muscle (TM) are two pre-clinical models aimed at studying the lesion sizes created by radiofrequency (RF) catheters in cardiac ablation. Previous experimental results have shown that thermal lesions created in the TM are slightly bigger than in the BH. Our objective was to use in-silico modeling to elucidate some of the causes of this difference. In-silico RF ablation models were created using the Arrhenius function to estimate lesion size under different energy settings (25 W/20 s, 50 W/6 s and 90 W/4 s) and parallel, 45° and perpendicular catheter positions. The models consisted of homogeneous tissue: myocardium in the BH model and striated muscle in the TM model. The computer results showed that the lesion sizes were generally bigger in the TM model and the differences depended on the energy setting, with hardly any differences at 90 W/4 s but with differences of 1 mm in depth and 1.5 m in width at 25 W/20 s. The higher electrical conductivity of striated muscle (0.446 S/m) than that of the myocardium (0.281 S/m) is possibly one of the causes of the higher percentage of RF energy delivered to the tissue in the TM model, with differences between models of 2–5% at 90 W/4 s, ~9% at 50 W/6 s and ~10% at 25 W/20 s. Proximity to the air–blood interface (just 2 cm from the tissue surface) artificially created in the TM model to emulate the cardiac cavity had little effect on lesion size. In conclusion, the TM-based experimental model creates fairly similar-sized lesions to the BH model, especially in high-power short-duration ablations (50 W/6 s and 90 W/4 s). Our computer results suggest that the higher electrical conductivity of striated muscle could be one of the causes of the slightly larger lesions in the TM model.

Publisher

MDPI AG

Subject

Bioengineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3