Recent Advances in Biological Recycling of Polyethylene Terephthalate (PET) Plastic Wastes

Author:

Soong Ya-Hue Valerie,Sobkowicz Margaret J.,Xie DongmingORCID

Abstract

Polyethylene terephthalate (PET) is one of the most commonly used polyester plastics worldwide but is extremely difficult to be hydrolyzed in a natural environment. PET plastic is an inexpensive, lightweight, and durable material, which can readily be molded into an assortment of products that are used in a broad range of applications. Most PET is used for single-use packaging materials, such as disposable consumer items and packaging. Although PET plastics are a valuable resource in many aspects, the proliferation of plastic products in the last several decades have resulted in a negative environmental footprint. The long-term risk of released PET waste in the environment poses a serious threat to ecosystems, food safety, and even human health in modern society. Recycling is one of the most important actions currently available to reduce these impacts. Current clean-up strategies have attempted to alleviate the adverse impacts of PET pollution but are unable to compete with the increasing quantities of PET waste exposed to the environment. In this review paper, current PET recycling methods to improve life cycle and waste management are discussed, which can be further implemented to reduce plastics pollution and its impacts on health and environment. Compared with conventional mechanical and chemical recycling processes, the biotechnological recycling of PET involves enzymatic degradation of the waste PET and the followed bioconversion of degraded PET monomers into value-added chemicals. This approach creates a circular PET economy by recycling waste PET or upcycling it into more valuable products with minimal environmental footprint.

Funder

United States Department of Energy

Publisher

MDPI AG

Subject

Bioengineering

Reference193 articles.

1. Biodegradation of plastics by Pseudomonas putida isolated from garden soil samples;Saminathan;J. Adv. Bot. Zool.,2014

2. Biodegradation of plastics: current scenario and future prospects for environmental safety

3. Plastics and Environmental Sustainability;Andrady,2015

4. Focus on potential environmental issues on plastic world towards a sustainable plastic recycling in developing countries

5. Production, use, and fate of all plastics ever made

Cited by 42 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3