A Novel Technique for Disinfection Treatment of Contaminated Dental Implant Surface Using 0.1% Riboflavin and 445 nm Diode Laser—An In Vitro Study

Author:

Morelato Luka,Budimir Ana,Smojver IgorORCID,Katalinić Ivan,Vuletić MarkoORCID,Ajanović Muhamed,Gabrić DraganaORCID

Abstract

Background: Antimicrobial photodynamic therapy (PDT) has been introduced as a potential option for peri-implantitis treatment. The aim of this study is to evaluate the antimicrobial effect of a novel technique involving a combination of 445 nm diode laser light with 0.1% riboflavin solution (used as a photosensitizing dye) as applied on a bacterial–fungal biofilm formed on implants and to compare the performance of this technique with that of the commonly used combination of 660 nm diode laser with 0.1% methylene blue dye. Methods: An in vitro study was conducted on 80 titanium dental implants contaminated with Staphylococcus aureus (SA) and Candida albicans (CA) species. The implants were randomly divided into four groups: negative control (NC), without surface treatment; positive control (PC), treated with a 0.2% chlorhexidine (CHX)-based solution; PDT1, 660 nm (EasyTip 320 µm, 200 mW, Q power = 100 mW, 124.34 W/cm2, 1240 J/cm2) with a 0.1% methylene blue dye; and PDT2, 445 nm (EasyTip 320 µm, 200 mW, Q power = 100 mW, 100 Hz, 124.34 W/cm2, 1.24 J/cm2) with a 0.1% riboflavin dye. Results: The PDT1 and PDT2 groups showed greater reduction of SA and CA in comparison to the NC group and no significant differences in comparison to the PC group. No statistically significant differences between the PDT1 and PDT2 groups were observed. Conclusions: A novel antimicrobial treatment involving a combination of 445 nm diode laser light with riboflavin solution showed efficiency in reducing SA and CA biofilm formation on dental implant surfaces comparable to those of the more commonly used PDT treatment consisting of 660 nm diode laser light with methylene blue dye or 0.2% CHX treatment.

Publisher

MDPI AG

Subject

Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3