Response Surface Optimization of Biophotocatalytic Degradation of Industrial Wastewater for Bioenergy Recovery

Author:

Tetteh Emmanuel KweinorORCID,Rathilal SudeshORCID

Abstract

The continuous combustion of fossil fuels and industrial wastewater pollution undermines global environmental and socio-economic sustainability. Addressing this necessitates a techno-scientific revolution to recover the renewable energy potential of wastewater towards a circular economy. Herein, a developed biophotocatalytic (BP) system was examined with an engineered Fe-TiO2 to ascertain its degradability efficiency and biogas production from industrial wastewater. The response surface methodology (RSM) based on a modified Box-Behnken designed experiment was used to optimize and maximize the BP system’s desirability. The parameters investigated included catalyst dosage of 2–6 g and hydraulic retention time (HRT) of 1–31 d at a constant temperature of 37.5 °C and organic loading rate of 2.38 kgCOD/Ld. The modified RSM-BBD predicted 100% desirability at an optimal catalyst load of 4 g and HRT of 21 d. This represented 267 mL/d of biogas and >98% COD, color, and turbidity removal. The experimental validity was in good agreement with the model predicted results at a high regression (R2 > 0.98) and 95% confidence level. This finding provides an insight into RSM modeling and optimization with the potential of integrating the BP system into wastewater settings for the treatment of industrial wastewater and biogas production.

Funder

Water Research Commission

National Research Foundation

Publisher

MDPI AG

Subject

Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3