Surgical Classification for Preclinical Rat Femoral Bone Defect Model: Standardization Based on Systematic Review, Anatomical Analysis and Virtual Surgery

Author:

Sun YuORCID,Helmholz HeikeORCID,Willumeit-Römer Regine

Abstract

Though surgical techniques profoundly influence in vivo experiments, significant heterogeneity exists in current surgeries for inducing rat femoral bone defects. Such variations reduce the reproducibility and comparability of preclinical studies, and are detrimental to clinical translation. The purposes of this study were: (1) to conduct a systematic review of rat femoral defect models, summarizing and analyzing the surgical techniques; (2) to analyze surgical design and potential pitfalls via 3D anatomy and virtual surgeries for fostering future precision research; and (3) to establish a surgical classification system, for improving the reproducibility and comparability among studies, avoiding unnecessary repetitive experiments. The online database PubMed was searched to identify studies from January 2000 to June 2022 using keywords, including rat, femur, bone defect. Eligible publications were included for a review of surgical methods. Anatomical analysis and virtual surgeries were conducted based on micro-CT reconstruction of the rat femur for further investigation and establishment of a classification system. A total of 545 publications were included, revealing marked heterogeneity in surgical methods. Four major surgical designs were reported for inducing defects from the proximal to distal femur: bone tunnel, cortical window, segmental defect, and wedge-shaped defect. Anatomical analysis revealed potential pitfalls hindering efficient clinical translation. A classification system was established according to the anatomical region, surgical design, and fixation devices. This systematic review in combination with 3D analysis and virtual surgery provides a general overview of current surgical approaches to inducing femoral defects in rats, and establishes a surgical classification facilitating preclinical research of quality and translational value.

Publisher

MDPI AG

Subject

Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3