Biomechanics of Pulmonary Autograft as Living Tissue: A Systematic Review

Author:

Nappi FrancescoORCID,Avtaar Singh Sanjeet SinghORCID

Abstract

Introduction: The choice of valve substitute for aortic valve surgery is tailored to the patient with specific indications and contraindications to consider. The use of an autologous pulmonary artery (PA) with a simultaneous homograft in the pulmonary position is called a Ross procedure. It permits somatic growth and the avoidance of lifelong anticoagulation. Concerns remain on the functionality of a pulmonary autograft in the aortic position when exposed to systemic pressure. Methods: A literature review was performed incorporating the following databases: Pub Med (1996 to present), Ovid Medline (1958 to present), and Ovid Embase (1982 to present), which was run on 1 January 2022 with the following targeted words: biomechanics of pulmonary autograft, biomechanics of Ross operation, aortic valve replacement and pulmonary autograph, aortic valve replacement and Ross procedure. To address the issues with heterogeneity, studies involving the pediatric cohort were also analyzed separately. The outcomes measured were early- and late-graft failure alongside mortality. Results: a total of 8468 patients were included based on 40 studies (7796 in pediatric cohort and young adult series and 672 in pediatric series). There was considerable experience accumulated by various institutions around the world. Late rates of biomechanical failure and mortality were low and comparable to the general population. The biomechanical properties of the PA were superior to other valve substitutes. Mathematical and finite element analysis studies have shown the potential stress-shielding effects of the PA root. Conclusion: The Ross procedure has excellent durability and longevity in clinical and biomechanical studies. The use of external reinforcements such as semi-resorbable scaffolds may further extend their longevity.

Publisher

MDPI AG

Subject

Bioengineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3