Detection and Classification of Bronchiectasis Based on Improved Mask-RCNN

Author:

Yue Ning,Zhang Jingwei,Zhao Jing,Zhang Qinyan,Lin Xinshan,Yang JijiangORCID

Abstract

Bronchiectasis is defined as a permanent dilation of the bronchi that can cause pulmonary ventilation dysfunction. CT examination is an important means of diagnosing bronchiectasis. It can also be used in severity scoring. Current studies on bronchiectasis have focused on high-resolution CT (HRCT), ignoring the more common low-dose CT (LDCT). Methodologically, existing studies have not adopted an authoritative standard to classify the severity of bronchiectasis. In effect, the accuracy of detection and classification needs to be improved for practical application. In this paper, the ACER image enhancement method, RDU-Net lung lobe segmentation method and HDC Mask R-CNN model were proposed to detect and classify bronchiectasis. Moreover, a Python-based system was developed: after inputing an LDCT image of a patient’s lung, it can automatically perform a series of processing, then call on the trained deep learning model for detection and classification, and automatically obtain the patient’s bronchiectasis final score according to the Reiff and BRICS scoring criteria. In this paper, the mapping relationship between original lung CT image data and bronchiectasis scoring system was established. The accuracy of the method proposed in this paper was 91.4%; the IOU, sensitivity and specificity were 88.8%, 88.6% and 85.4%, respectively; and the recognition speed of one picture was about 1 s. Compared to a human doctor, the system can process large amounts of data simultaneously, quickly and efficiently, with the same judgment accuracy as a human doctor. Doctors only need to judge the uncertain cases, which significantly reduces the burden of doctors and provides a useful reference for doctors to diagnose the disease.

Funder

National Key R&D Program of China

Collaborative Innovation Project of Beijing Chaoyang District

Publisher

MDPI AG

Subject

Bioengineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3