Abstract
The aim of this study is to evaluate the wear volume of interim crowns fabricated using digital light processing 3D printing according to the printing angle. A total of five patients undergoing the placement of a single crown on the mandibular molar were included. Interim crowns were fabricated directly in the oral cavity using the conventional method. A digital light processing 3D printer was then used to fabricate crowns with build angles of 0, 45, and 90 degrees. Therefore, four fabricated interim crowns were randomly delivered to the patients, and each was used for one week. Before and after use, the intaglio surfaces of the interim crowns were scanned using a 3D scanner. The volume changes before and after use were measured, and changes in the height of the occlusal surface were evaluated using the root mean square value. Data normality was verified by statistical analysis, and the wear volume in each group was evaluated using a one-way analysis of variance and Tukey’s honestly significant difference test (α = 0.05). Compared with the RMS values of the conventional method (11.88 ± 2.69 µm) and the 3D-printing method at 0 degrees (12.14 ± 2.38 µm), the RMS values were significantly high at 90 degrees (16.46 ± 2.39 µm) (p < 0.05). Likewise, there was a significant difference in the change in volume between the groups (p = 0.002), with a significantly higher volume change value at 90 degrees (1.74 ± 0.41 mm3) than in the conventional method (0.70 ± 0.15 mm3) (p < 0.05). A printing angle of 90 degrees is not recommended when interim crowns are fabricated using digital light processing 3D printing.
Funder
National Research Foundation of Korea(NRF) grant funded by the Korea governmen
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献