Physical Stimulation Combined with Biomaterials Promotes Peripheral Nerve Injury Repair

Author:

Zeng Zhipeng,Yang Yajing,Deng Junyong,Saif Ur Rahman MuhammadORCID,Sun Chengmei,Xu Shanshan

Abstract

Peripheral nerve injury (PNI) is a clinical problem with high morbidity that can cause severe damage. Surgical suturing or implants are usually required due to the slow speed and numerous factors affecting repair after PNI. An autologous nerve graft is the gold standard for PNI repair among implants. However, there is a potential problem of the functional loss of the donor site. Therefore, tissue-engineered nerve biomaterials are often used to bridge the gap between nerve defects, but the therapeutic effect is insufficient. In order to enhance the repair effect of nerve biomaterials for PNI, researchers are seeking to combine various stimulation elements, such as the addition of biological factors such as nerve growth factors or physical factors such as internal microstructural modifications of catheters and their combined application with physical stimulation therapy. Physical stimulation therapy is safer, is more convenient, and has more practical features than other additive factors. Its feasibility and convenience, when combined with nerve biomaterials, provide broader application prospects for PNI repair, and has therefore become a research hot spot. This paper will review the combined application of physical stimulation and biomaterials in PNI repair in recent years to provide new therapeutic ideas for the future use of physical stimulation in PNI repair.

Funder

National Natural Science Foundation of China

Shenzhen Science and Technology Innovation Project

Ningbo Guangyuan Zhi Xin Biotechnology .Co.,Ltd

Publisher

MDPI AG

Subject

Bioengineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Multi-scale, multi-level anisotropic silk fibroin/metformin scaffolds for repair of peripheral nerve injury;International Journal of Biological Macromolecules;2023-08

2. Injured nerves respond favorably to an integrated tension- and conduit-based regenerative strategy;Frontiers in Biomaterials Science;2023-02-02

3. Biomaterials;Stem Cell Biology and Regenerative Medicine;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3