A Hybrid Deep Learning Approach for ECG-Based Arrhythmia Classification

Author:

Madan ParulORCID,Singh Vijay,Singh Devesh Pratap,Diwakar Manoj,Pant Bhaskar,Kishor Avadh

Abstract

Arrhythmias are defined as irregularities in the heartbeat rhythm, which may infrequently occur in a human’s life. These arrhythmias may cause potentially fatal complications, which may lead to an immediate risk of life. Thus, the detection and classification of arrhythmias is a pertinent issue for cardiac diagnosis. (1) Background: To capture these sporadic events, an electrocardiogram (ECG), a register containing the heart’s electrical function, is considered the gold standard. However, since ECG carries a vast amount of information, it becomes very complex and challenging to extract the relevant information from visual analysis. As a result, designing an efficient (automated) system to analyse the enormous quantity of data possessed by ECG is critical. (2) Method: This paper proposes a hybrid deep learning-based approach to automate the detection and classification process. This paper makes two-fold contributions. First, 1D ECG signals are translated into 2D Scalogram images to automate the noise filtering and feature extraction. Then, based on experimental evidence, by combining two learning models, namely 2D convolutional neural network (CNN) and the Long Short-Term Memory (LSTM) network, a hybrid model called 2D-CNN-LSTM is proposed. (3) Result: To evaluate the efficacy of the proposed 2D-CNN-LSTM approach, we conducted a rigorous experimental study using the widely adopted MIT–BIH arrhythmia database. The obtained results show that the proposed approach provides ≈98.7%, 99%, and 99% accuracy for Cardiac Arrhythmias (ARR), Congestive Heart Failure (CHF), and Normal Sinus Rhythm (NSR), respectively. Moreover, it provides an average sensitivity of the proposed model of 98.33% and a specificity value of 98.35%, for all three arrhythmias. (4) Conclusions: For the classification of arrhythmias, a robust approach has been introduced where 2D scalogram images of ECG signals are trained over the CNN-LSTM model. The results obtained are better as compared to the other existing techniques and will greatly reduce the amount of intervention required by doctors. For future work, the proposed method can be applied over some live ECG signals and Bi-LSTM can be applied instead of LSTM.

Publisher

MDPI AG

Subject

Bioengineering

Cited by 68 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3