Smart-Data-Driven System for Alzheimer Disease Detection through Electroencephalographic Signals

Author:

Araújo Teresa,Teixeira João PauloORCID,Rodrigues Pedro MiguelORCID

Abstract

Background: Alzheimer’s Disease (AD) stands out as one of the main causes of dementia worldwide and it represents around 65% of all dementia cases, affecting mainly elderly people. AD is composed of three evolutionary stages: Mild Cognitive Impairment (MCI), Mild and Moderate AD (ADM) and Advanced AD (ADA). It is crucial to create a tool for assisting AD diagnosis in its early stages with the aim of halting the disease progression. Methods: The main purpose of this study is to develop a system with the ability of differentiate each disease stage by means of Electroencephalographic Signals (EEG). Thereby, an EEG nonlinear multi-band analysis by Wavelet Packet was performed enabling to extract several features from each study group. Classic Machine Learning (ML) and Deep Learning (DL) methods have been used for data classification per EEG channel. Results: The maximum accuracies obtained were 78.9% (Healthy controls (C) vs. MCI), 81.0% (C vs. ADM), 84.2% (C vs. ADA), 88.9% (MCI vs. ADM), 93.8% (MCI vs. ADA), 77.8% (ADM vs. ADA) and 56.8% (All vs. All). Conclusions: The proposed method outperforms previous studies with the same database by 2% in binary comparison MCI vs. ADM and central and parietal brain regions revealed abnormal activity as AD progresses.

Funder

Fundação para a Ciência e Tecnologia

Publisher

MDPI AG

Subject

Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3