Automatic Segmentation of Monofilament Testing Sites in Plantar Images for Diabetic Foot Management

Author:

Costa Tatiana,Coelho Luis,Silva Manuel F.ORCID

Abstract

Diabetic peripheral neuropathy is a major complication of diabetes mellitus, and it is the leading cause of foot ulceration and amputations. The Semmes–Weinstein monofilament examination (SWME) is a widely used, low-cost, evidence-based tool for predicting the prognosis of diabetic foot patients. The examination can be quick, but due to the high prevalence of the disease, many healthcare professionals can be assigned to this task several days per month. In an ongoing project, it is our objective to minimize the intervention of humans in the SWME by using an automated testing system relying on computer vision. In this paper we present the project’s first part, constituting a system for automatically identifying the SWME testing sites from digital images. For this, we have created a database of plantar images and developed a segmentation system, based on image processing and deep learning—both of which are novelties. From the 9 testing sites, the system was able to correctly identify most 8 in more than 80% of the images, and 3 of the testing sites were correctly identified in more than 97.8% of the images.

Funder

Fundação para a Ciência e Tecnologia

Publisher

MDPI AG

Subject

Bioengineering

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Calibration and Modeling of the Semmes–Weinstein Monofilament for Diabetic Foot Management;Bioengineering;2024-08-31

2. Digital infrared thermography and machine learning for diabetic foot assessment: thermal patterns and classification;Journal of Diabetes & Metabolic Disorders;2024-06-12

3. Wearable sensors-based postural analysis and fall risk assessment among patients with diabetic foot neuropathy;Journal of Tissue Viability;2023-11

4. Vision Robotics for the Automatic Assessment of the Diabetic Foot;Flexible Automation and Intelligent Manufacturing: Establishing Bridges for More Sustainable Manufacturing Systems;2023-08-24

5. A New Equipment for Automatic Calibration of the Semmes-Weinstein Monofilament;Flexible Automation and Intelligent Manufacturing: Establishing Bridges for More Sustainable Manufacturing Systems;2023-08-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3