Decellularized Human Umbilical Tissue-Derived Hydrogels Promote Proliferation and Chondrogenic Differentiation of Mesenchymal Stem Cells

Author:

Ramzan Faiza,Ekram Sobia,Frazier Trivia,Salim Asmat,Mohiuddin Omair Anwar,Khan Irfan

Abstract

Tissue engineering is a promising approach for the repair and regeneration of cartilaginous tissue. Appropriate three-dimensional scaffolding materials that mimic cartilage are ideal for the repair of chondral defects. The emerging decellularized tissue-based scaffolds have the potential to provide essential biochemical signals and structural integrity, which mimics the natural tissue environment and directs cellular fate. Umbilical cord-derived hydrogels function as 3D scaffolding material, which support adherence, proliferation, migration, and differentiation of cells due to their similar biochemical composition to cartilage. Therefore, the present study aimed to establish a protocol for the formulation of a hydrogel from decellularized human umbilical cord (DUC) tissue, and assess its application in the proliferation and differentiation of UC-MSCs along chondrogenic lineage. The results showed that the umbilical cord was efficiently decellularized. Subsequently, DUC hydrogel was prepared, and in vitro chondral differentiation of MSCs seeded on the scaffold was determined. The developed protocol efficiently removed the cellular and nuclear content while retaining the extracellular matrix (ECM). DUC tissue, pre-gel, and hydrogels were evaluated by FTIR spectroscopy, which confirmed the gelation from pre-gel to hydrogel. SEM analysis revealed the fibril morphology and porosity of the DUC hydrogel. Calcein AM and Alamar blue assays confirmed the MSC survival, attachment, and proliferation in the DUC hydrogels. Following seeding of UC-MSCs in the hydrogels, they were cultured in stromal or chondrogenic media for 28 days, and the expression of chondrogenic marker genes including TGF-β1, BMP2, SOX-9, SIX-1, GDF-5, and AGGRECAN was significantly increased (* p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001). Moreover, the hydrogel concentration was found to significantly affect the expression of chondrogenic marker genes. The overall results indicate that the DUC-hydrogel is compatible with MSCs and supports their chondrogenic differentiation in vitro.

Funder

Higher Education Commission

Publisher

MDPI AG

Subject

Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3