Assessment of Albumin-Incorporating Scores at Hepatocellular Carcinoma Diagnosis Using Machine Learning Techniques: An Evaluation of Prognostic Relevance

Author:

Suárez Miguel123ORCID,Martínez-Blanco Pablo12ORCID,Gil-Rojas Sergio12ORCID,Torres Ana M.23,Torralba-González Miguel456ORCID,Mateo Jorge23

Affiliation:

1. Gastroenterology Department, Virgen de la Luz Hospital, 16002 Cuenca, Spain

2. Medical Analysis Expert Group, Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM), 45071 Toledo, Spain

3. Medical Analysis Expert Group, Institute of Technology, Universidad de Castilla-La Mancha, 16071 Cuenca, Spain

4. Internal Medicine Unit, University Hospital of Guadalajara, 19002 Guadalajara, Spain

5. Faculty of Medicine, Universidad de Alcalá de Henares, 28801 Alcalá de Henares, Spain

6. Translational Research Group in Cellular Immunology (GITIC), Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM), 45071 Toledo, Spain

Abstract

Hepatocellular carcinoma (HCC) presents high mortality rates worldwide, with limited evidence on prognostic factors at diagnosis. This study evaluates the utility of common scores incorporating albumin as predictors of mortality at HCC diagnosis using Machine Learning techniques. They are also compared to other scores and variables commonly used. A retrospective cohort study was conducted with 191 patients from Virgen de la Luz Hospital of Cuenca and University Hospital of Guadalajara. Demographic, analytical, and tumor-specific variables were included. Various Machine Learning algorithms were implemented, with eXtreme Gradient Boosting (XGB) as the reference method. In the predictive model developed, the Barcelona Clinic Liver Cancer score was the best predictor of mortality, closely followed by the Platelet-Albumin-Bilirubin and Albumin-Bilirubin scores. Albumin levels alone also showed high relevance. Other scores, such as C-Reactive Protein/albumin and Child-Pugh performed less effectively. XGB proved to be the most accurate method across the metrics analyzed, outperforming other ML algorithms. In conclusion, the Barcelona Clinic Liver Cancer, Platelet-Albumin-Bilirubin and Albumin-Bilirubin scores are highly reliable for assessing survival at HCC diagnosis. The XGB-developed model proved to be the most reliable for this purpose compared to the other proposed methods.

Funder

University of Castilla-La Mancha, Diputación de Cuenca and Virgen de la Luz Hospital

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3