A Whole-Spine Radiography Study to Reduce Patient Exposure Dose and Artifacts Using the EOS Imaging System

Author:

Hong DongHee1,Joo YoungCheol2,Kim Eunhye3ORCID

Affiliation:

1. Department of Radiological Science, Shinhan University, Uijeongbu 11644, Gyeonggi-do, Republic of Korea

2. Department of Radiology, Samsung Medical Center, Seoul 06351, Republic of Korea

3. Department of Radiological Science, Hanseo University, Seosan 31962, Republic of Korea

Abstract

Whole-spine radiography can be accomplished through two methods: (1) segmented imaging employing X-ray tube angulation and detectors, or (2) the Euronext Paris Advanced Orthopedic Solutions (EOS) 2D Imaging system that can capture the entire spine in a single image using X-ray tubes and detectors oriented at a 90-degree angle. This study aimed to establish optimal EOS examination parameters based on patient morphotype and scan speed to reduce patient radiation exposure, repeat examinations, heat stress on equipment, and X-ray tube cooling time. X-ray exposure conditions involved adjustments of scan speed ranging from two to four steps, contingent upon the patient’s morphotype (‘S’, small body; ‘M’, medium body; and ‘L’, large body. Patient dose measurements were conducted 20 times for each set of conditions. When transitioning from an ‘S’ to an ‘M’ morphotype at a constant scan speed, the entrance skin dose (ESD) exhibited an increase of approximately 41.25 ± 4.57%. A similar change from an ‘M’ to an ‘L’ morphotype resulted in an ESD increase of roughly 59.56 ± 24.00%. A transition from an ‘S’ to an ‘L’ morphotype at the same scan speed manifested an ESD elevation of approximately 124.21 ± 26.96%. This study underscores significant variations in radiation dose, ranging from 40% to 50%, when altering morphotype while maintaining a consistent scan speed.

Funder

Shihan University Research Fund in 2022

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3