Enzyme-Mediated Exponential Glucose Release: A Model-Based Strategy for Continuous Defined Fed-Batch in Small-Scale Cultivations

Author:

Kemmer Annina1ORCID,Cai Linda1ORCID,Born Stefan1,Cruz Bournazou M. Nicolas1ORCID,Neubauer Peter1ORCID

Affiliation:

1. Institute of Biotechnology, Chair of Bioprocess Engineering, Technische Universität Berlin, 13355 Berlin, Germany

Abstract

Miniaturized cultivation systems offer the potential to enhance experimental throughput in bioprocess development. However, they usually lack the miniaturized pumps necessary for fed-batch mode, which is commonly employed in industrial bioprocesses. An alternative are enzyme-mediated glucose release systems from starch-derived polymers, facilitating continuous glucose supply. Nevertheless, while the glucose release, and thus the feed rate, is controlled by the enzyme concentration, it also strongly depends on the type of starch derivative, and the culture conditions as well as pH and temperature. So far it was not possible to implement controlled feeding strategies (e.g., exponential feeding). In this context, we propose a model-based approach to achieve precise control over enzyme-mediated glucose release in cultivations. To this aim, an existing mathematical model was integrated into a computational framework to calculate setpoints for enzyme additions. We demonstrate the ability of the tool to maintain different pre-defined exponential growth rates during Escherichia coli cultivations in parallel mini-bioreactors integrated into a robotic facility. Although in this case study, the intermittent additions of enzyme and dextrin were performed by a liquid handler, the approach is adaptable to manual applications. Thus, we present a straightforward and robust approach for implementing defined continuous fed-batch processes in small-scale systems, where continuous feeding was only possible with low accuracy or high technical efforts until now.

Funder

German Federal Ministry of Education and Research

German Research Foundation and the Open Access Publication Fund of TU Berlin

Boehringer Ingelheim RCV GmbH & Co KG

Berliner ChancengleichheitsProgramm

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3