Regeneration Process of an Autologous Tissue-Engineered Trachea (aTET) in a Rat Patch Tracheoplasty Model

Author:

Iwasaki Shun1ORCID,Deguchi Koichi1,Iwai Ryosuke2,Nakayama Yasuhide3,Okuyama Hiroomi1

Affiliation:

1. Department of Pediatric Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita 565-0871, Japan

2. Research Institute of Technology, Okayama University of Science, 1-1, Ridaicho, Kita-Ku, Okayama 700-0005, Japan

3. Osaka Laboratory, Biotube Co., Ltd., 3-10-1 Senriyama-Higashi, Suita 565-0842, Japan

Abstract

The treatment of long-tracheal lesion is difficult because there are currently no viable grafts for tracheal replacement. To solve this problem, we have developed an autologous Tissue-Engineered Trachea (aTET), which is made up of collagenous tissues and cartilage-like structures derived from rat chondrocytes. This graft induced successful long-term survival in a small-animal experiment in our previous study. In this study, we investigated the regeneration process of an aTET to attain reproducible success. We prepared an aTET by using a specially designed mold and performed patch tracheoplasty with an aTET. We assigned twenty-seven rats to three groups according to the three types of patch grafts used: aTET patches (the aTET group), fresh tracheal autograft patches (the Ag group), or polylactic acid and polycaprolactone copolymer sheets (the PPc group). In each group, gross and histological evaluations were performed at 1 month (n = 3), 3 months (n = 3), and 6 months (n = 3) after implantation. We obtained high survival rates in all groups, but only the PPc group attained thick tracheal walls with granular tissues and no tracheal regeneration. On the other hand, the aTET and Ag groups reproducibly achieved complete tracheal regeneration in 6 months. So, an aTET could be a promising candidate for tracheal regeneration grafts.

Funder

JSPS KAKENHI

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3