Synthesizing High b-Value Diffusion-Weighted Imaging of Gastric Cancer Using an Improved Vision Transformer CycleGAN

Author:

Hu Can1ORCID,Bian Congchao1,Cao Ning1ORCID,Zhou Han2,Guo Bin3ORCID

Affiliation:

1. School of Computer and Soft, Hohai University, Nanjing 211100, China

2. School of Electronic Science and Engineering, Nanjing University, Nanjing 210046, China

3. College of Computer and Information Engineering, Xinjiang Agricultural University, Urumqi 830052, China

Abstract

Background: Diffusion-weighted imaging (DWI), a pivotal component of multiparametric magnetic resonance imaging (mpMRI), plays a pivotal role in the detection, diagnosis, and evaluation of gastric cancer. Despite its potential, DWI is often marred by substantial anatomical distortions and sensitivity artifacts, which can hinder its practical utility. Presently, enhancing DWI’s image quality necessitates reliance on cutting-edge hardware and extended scanning durations. The development of a rapid technique that optimally balances shortened acquisition time with improved image quality would have substantial clinical relevance. Objectives: This study aims to construct and evaluate the unsupervised learning framework called attention dual contrast vision transformer cyclegan (ADCVCGAN) for enhancing image quality and reducing scanning time in gastric DWI. Methods: The ADCVCGAN framework, proposed in this study, employs high b-value DWI (b = 1200 s/mm2) as a reference for generating synthetic b-value DWI (s-DWI) from acquired lower b-value DWI (a-DWI, b = 800 s/mm2). Specifically, ADCVCGAN incorporates an attention mechanism CBAM module into the CycleGAN generator to enhance feature extraction from the input a-DWI in both the channel and spatial dimensions. Subsequently, a vision transformer module, based on the U-net framework, is introduced to refine detailed features, aiming to produce s-DWI with image quality comparable to that of b-DWI. Finally, images from the source domain are added as negative samples to the discriminator, encouraging the discriminator to steer the generator towards synthesizing images distant from the source domain in the latent space, with the goal of generating more realistic s-DWI. The image quality of the s-DWI is quantitatively assessed using metrics such as the peak signal-to-noise ratio (PSNR), structural similarity index (SSIM), feature similarity index (FSIM), mean squared error (MSE), weighted peak signal-to-noise ratio (WPSNR), and weighted mean squared error (WMSE). Subjective evaluations of different DWI images were conducted using the Wilcoxon signed-rank test. The reproducibility and consistency of b-ADC and s-ADC, calculated from b-DWI and s-DWI, respectively, were assessed using the intraclass correlation coefficient (ICC). A statistical significance level of p < 0.05 was considered. Results: The s-DWI generated by the unsupervised learning framework ADCVCGAN scored significantly higher than a-DWI in quantitative metrics such as PSNR, SSIM, FSIM, MSE, WPSNR, and WMSE, with statistical significance (p < 0.001). This performance is comparable to the optimal level achieved by the latest synthetic algorithms. Subjective scores for lesion visibility, image anatomical details, image distortion, and overall image quality were significantly higher for s-DWI and b-DWI compared to a-DWI (p < 0.001). At the same time, there was no significant difference between the scores of s-DWI and b-DWI (p > 0.05). The consistency of b-ADC and s-ADC readings was comparable among different readers (ICC: b-ADC 0.87–0.90; s-ADC 0.88–0.89, respectively). The repeatability of b-ADC and s-ADC readings by the same reader was also comparable (Reader1 ICC: b-ADC 0.85–0.86, s-ADC 0.85–0.93; Reader2 ICC: b-ADC 0.86–0.87, s-ADC 0.89–0.92, respectively). Conclusions: ADCVCGAN shows excellent promise in generating gastric cancer DWI images. It effectively reduces scanning time, improves image quality, and ensures the authenticity of s-DWI images and their s-ADC values, thus providing a basis for assisting clinical decision making.

Funder

Jiangsu Provincial Key Research and Development Program

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3