Three-Dimensionally Printed Agarose Micromold Supports Scaffold-Free Mouse Ex Vivo Follicle Growth, Ovulation, and Luteinization

Author:

Zaniker Emily J.1,Hashim Prianka H.1ORCID,Gauthier Samuel1,Ankrum James A.2ORCID,Campo Hannes1ORCID,Duncan Francesca E.1ORCID

Affiliation:

1. Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA

2. Roy J. Carver Department of Biomedical Engineering, Pappajohn Biomedical Institute, University of Iowa, Iowa City, IA 52245, USA

Abstract

Ex vivo follicle growth is an essential tool, enabling interrogation of folliculogenesis, ovulation, and luteinization. Though significant advancements have been made, existing follicle culture strategies can be technically challenging and laborious. In this study, we advanced the field through development of a custom agarose micromold, which enables scaffold-free follicle culture. We established an accessible and economical manufacturing method using 3D printing and silicone molding that generates biocompatible hydrogel molds without the risk of cytotoxicity from leachates. Each mold supports simultaneous culture of multiple multilayer secondary follicles in a single focal plane, allowing for constant timelapse monitoring and automated analysis. Mouse follicles cultured using this novel system exhibit significantly improved growth and ovulation outcomes with comparable survival, oocyte maturation, and hormone production profiles as established three-dimensional encapsulated in vitro follicle growth (eIVFG) systems. Additionally, follicles recapitulated aspects of in vivo ovulation physiology with respect to their architecture and spatial polarization, which has not been observed in eIVFG systems. This system offers simplicity, scalability, integration with morphokinetic analyses of follicle growth and ovulation, and compatibility with existing microphysiological platforms. This culture strategy has implications for fundamental follicle biology, fertility preservation strategies, reproductive toxicology, and contraceptive drug discovery.

Funder

Eunice Kennedy Shriver National Institute of Child Health and Human Development

NIH Common Fund’s SenNet program

Histochemical Society’s Graduate Medical Trainee and Graduate Student Cornerstone Grant

Bill & Melinda Gates Foundation

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3