Deep Learning for Delineation of the Spinal Canal in Whole-Body Diffusion-Weighted Imaging: Normalising Inter- and Intra-Patient Intensity Signal in Multi-Centre Datasets

Author:

Candito Antonio1ORCID,Holbrey Richard1,Ribeiro Ana2ORCID,Messiou Christina12ORCID,Tunariu Nina12,Koh Dow-Mu12,Blackledge Matthew D.1ORCID

Affiliation:

1. Division of Radiotherapy and Imaging, The Institute of Cancer Research, London SM2 5NG, UK

2. Department of Radiology, The Royal Marsden NHS Foundation Trust, London SW3 6JJ, UK

Abstract

Background: Whole-Body Diffusion-Weighted Imaging (WBDWI) is an established technique for staging and evaluating treatment response in patients with multiple myeloma (MM) and advanced prostate cancer (APC). However, WBDWI scans show inter- and intra-patient intensity signal variability. This variability poses challenges in accurately quantifying bone disease, tracking changes over follow-up scans, and developing automated tools for bone lesion delineation. Here, we propose a novel automated pipeline for inter-station, inter-scan image signal standardisation on WBDWI that utilizes robust segmentation of the spinal canal through deep learning. Methods: We trained and validated a supervised 2D U-Net model to automatically delineate the spinal canal (both the spinal cord and surrounding cerebrospinal fluid, CSF) in an initial cohort of 40 patients who underwent WBDWI for treatment response evaluation (80 scans in total). Expert-validated contours were used as the target standard. The algorithm was further semi-quantitatively validated on four additional datasets (three internal, one external, 207 scans total) by comparing the distributions of average apparent diffusion coefficient (ADC) and volume of the spinal cord derived from a two-component Gaussian mixture model of segmented regions. Our pipeline subsequently standardises WBDWI signal intensity through two stages: (i) normalisation of signal between imaging stations within each patient through histogram equalisation of slices acquired on either side of the station gap, and (ii) inter-scan normalisation through histogram equalisation of the signal derived within segmented spinal canal regions. This approach was semi-quantitatively validated in all scans available to the study (N = 287). Results: The test dice score, precision, and recall of the spinal canal segmentation model were all above 0.87 when compared to manual delineation. The average ADC for the spinal cord (1.7 × 10−3 mm2/s) showed no significant difference from the manual contours. Furthermore, no significant differences were found between the average ADC values of the spinal cord across the additional four datasets. The signal-normalised, high-b-value images were visualised using a fixed contrast window level and demonstrated qualitatively better signal homogeneity across scans than scans that were not signal-normalised. Conclusion: Our proposed intensity signal WBDWI normalisation pipeline successfully harmonises intensity values across multi-centre cohorts. The computational time required is less than 10 s, preserving contrast-to-noise and signal-to-noise ratios in axial diffusion-weighted images. Importantly, no changes to the clinical MRI protocol are expected, and there is no need for additional reference MRI data or follow-up scans.

Funder

National Institute for Health and Care Research

Publisher

MDPI AG

Subject

Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3