A Machine Learning Force Field for Bio-Macromolecular Modeling Based on Quantum Chemistry-Calculated Interaction Energy Datasets

Author:

Fan Zhen-Xuan1,Chao Sheng D.12ORCID

Affiliation:

1. Institute of Applied Mechanics, National Taiwan University, Taipei 106, Taiwan

2. Center for Quantum Science and Engineering, National Taiwan University, Taipei 106, Taiwan

Abstract

Accurate energy data from noncovalent interactions are essential for constructing force fields for molecular dynamics simulations of bio-macromolecular systems. There are two important practical issues in the construction of a reliable force field with the hope of balancing the desired chemical accuracy and working efficiency. One is to determine a suitable quantum chemistry level of theory for calculating interaction energies. The other is to use a suitable continuous energy function to model the quantum chemical energy data. For the first issue, we have recently calculated the intermolecular interaction energies using the SAPT0 level of theory, and we have systematically organized these energies into the ab initio SOFG-31 (homodimer) and SOFG-31-heterodimer datasets. In this work, we re-calculate these interaction energies by using the more advanced SAPT2 level of theory with a wider series of basis sets. Our purpose is to determine the SAPT level of theory proper for interaction energies with respect to the CCSD(T)/CBS benchmark chemical accuracy. Next, to utilize these energy datasets, we employ one of the well-developed machine learning techniques, called the CLIFF scheme, to construct a general-purpose force field for biomolecular dynamics simulations. Here we use the SOFG-31 dataset and the SOFG-31-heterodimer dataset as the training and test sets, respectively. Our results demonstrate that using the CLIFF scheme can reproduce a diverse range of dimeric interaction energy patterns with only a small training set. The overall errors for each SAPT energy component, as well as the SAPT total energy, are all well below the desired chemical accuracy of ~1 kcal/mol.

Funder

National Science and Technology Council of Taiwan

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3