Staging of Liver Fibrosis Based on Energy Valley Optimization Multiple Stacking (EVO-MS) Model

Author:

Zhang Xuejun12ORCID,Chen Shengxiang1,Zhang Pengfei1,Wang Chun1,Wang Qibo1,Zhou Xiangrong3

Affiliation:

1. School of Computer, Electronics and Information, Guangxi University, Nanning 530004, China

2. Guangxi Key Laboratory of Multimedia Communications and Network Technology, Guangxi University, Nanning 530004, China

3. Department of Electrical, Electronic and Computer Engineering, Gifu University, Gifu 501-1193, Japan

Abstract

Currently, staging the degree of liver fibrosis predominantly relies on liver biopsy, a method fraught with potential risks, such as bleeding and infection. With the rapid development of medical imaging devices, quantification of liver fibrosis through image processing technology has become feasible. Stacking technology is one of the effective ensemble techniques for potential usage, but precise tuning to find the optimal configuration manually is challenging. Therefore, this paper proposes a novel EVO-MS model—a multiple stacking ensemble learning model optimized by the energy valley optimization (EVO) algorithm to select most informatic features for fibrosis quantification. Liver contours are profiled from 415 biopsied proven CT cases, from which 10 shape features are calculated and inputted into a Support Vector Machine (SVM) classifier to generate the accurate predictions, then the EVO algorithm is applied to find the optimal parameter combination to fuse six base models: K-Nearest Neighbors (KNNs), Decision Tree (DT), Naive Bayes (NB), Extreme Gradient Boosting (XGB), Gradient Boosting Decision Tree (GBDT), and Random Forest (RF), to create a well-performing ensemble model. Experimental results indicate that selecting 3–5 feature parameters yields satisfactory results in classification, with features such as the contour roundness non-uniformity (Rmax), maximum peak height of contour (Rp), and maximum valley depth of contour (Rm) significantly influencing classification accuracy. The improved EVO algorithm, combined with a multiple stacking model, achieves an accuracy of 0.864, a precision of 0.813, a sensitivity of 0.912, a specificity of 0.824, and an F1-score of 0.860, which demonstrates the effectiveness of our EVO-MS model in staging the degree of liver fibrosis.

Funder

the National Natural Science Foundation of China

the Science and Technology Key Projects of Guangxi Province

the Guangxi University Training Program of Innovation and Entrepreneurship

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3